MATH 2111 Matrix Algebra and its Applications

Syllabus - Summer 2022

Course Home Page

- Course website:
 - o http://canvas.ust.hk

Instructor

- Instructor: Dr. Ku, Yin Bon (Albert)
 - o Office: Rm 3446, email address: maybku@ust.hk
- TA: Leung Ho Ming
 - Office: Rm 3011, email address: malhm@ust.hk

Online Meeting Time

- Lectures L1: Mon, Wed, Fri 1:30pm 4:20pm. (Jun 22 July 22)
- Tutorials T1: Mon, Wed, Fri 5:00pm 5:50pm. (Jun 22 July 22)

Course Description

Duration: one semester. Credits: 3 units.

Systems of linear equations; vector spaces; linear transformations; matrix representation of linear transformations; linear operators, eigenvalues and eigenvectors; similarity invariants and canonical forms.

Prerequisite(s): A passing grade in AL Pure Mathematics / AL Applied Mathematics; OR MATH 1014 OR MATH 1020 OR MATH 1024

Exclusion(s): MATH 2121, MATH 2131, MATH 2350

Student Learning Resources

Lecture notes:

Interactive lecture notes can be viewed online.

Reference:

Linear Algebra and its Applications by David C. Lay, Stephen R. Lay, Judi J. McDonald 5th edition. Pearson.

Intended Learning Outcomes

Upon the end of the course, students should:

- 1. Develop an understanding of the core ideas and concepts of matrix algebra, linear transformations, eigenvectors and inner product spaces
- 2. Recognize the power of abstraction and generalization, carry out mathematical work with independent judgement
- Apply rigorous, analytical and numeric approach to analyze and solve problems using concepts of linear algebra
- 4. Be able to communicate problem solutions using correct mathematical terminology and good English.

Assessment Scheme

<u>Assessment</u> <u>Assessing course ILOs</u>

Online Homework: 25 % 1,2,3,4 Final Exam: 75 %. 1,2,3,4

(Note: Final Exam will be held on July 28)

Teaching Approach

Scheduled activities: 3 hours (lecture) + 1 hour (tutorial).

Lecture will focus on illustrating the concepts of the course content, while tutorials will focus on examples and problem skills.

Tentative Course Schedule

Week	Content	Remarks
1	 Definition of a vector and its matrix representation Vector addition and scaling, linear combination, span Linear independence, basis, dimension Linear transformations Systems of linear equations 	
2	 Gaussian elimination Solving systems of linear equations Computing the inverse of a matrix Determinants 	
3	 General vector spaces Column space and null space Rank theorem Eigenvalues and eigenvectors Diagonalization 	
4	 Inner product and orthogonality Orthogonal projections and Gram-Schmidt process Least square method 	